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Abstract. We present a detailed statistical analysis of the Rosenbluth method of generating 
self-avoiding walks. This method became one  of the standard methods for simulating long 
polymers. We show that this method, although very successful in yielding large samples,  
becomes exponentially poor  with increasing chain length. This has to be taken into account 
for simulations and  was not done yet. We describe a way to quantify the number of chains 
needed. However, when compared to direct simple sampling, the method still, carefully 
used, yields better results, especially in the vicinity of the theta point of polymers. Special 
care has to b e  taken for d = 2. Some extensions to  improve the situation are also discussed. 

1. Introduction 

Monte Carlo methods have been proved to be very useful for the investigation of the 
statistics of polymers during the last two decades [ 1-31. In particular, for the problem 
of the excluded volume where exact calculations are impossible ( d  = 3) [4], these 
methods are very valuable. There is, however, one serious problem, namely the so-called 
attrition. If one, for example, samples a random walk on a lattice, there are 9: 
configurations in phase space. Here qo is the coordination number of the lattice and  
N is the number of bonds of the walk; the first site is considered to be at  a fixed lattice 
position. For self-avoiding walks it is now known that there are only q $ N Y - ’  configur- 
ations with qeff < qo and y a critical exponent ( y = g, d = 3) [4]. On the cubic lattice 
qo = 6 and qeR= 4.68 [l]. Therefore, only an amount (qe f f / qo -  l )”NY-’  of all generated 
random walks is self-avoiding. Thus, if one samples the chains by generating random 
walks and  then searching for self-avoiding chains ( S A W )  the gain becomes exponentially 
small. This causes serious problems for the simulation of systems which are supposed 
to have somewhat realistic chain lengths, in order to compare them with polymers. It 
is well known that there have been many attempts to overcome these problems by the 
use of more intelligent sampling methods. We cannot discuss all the different ways 
here in detail but want to introduce briefly the various classes of methods. 

First, there is the simple sampling method as described above. The first modification 
was introduced some 30 years ago by Rosenbluth and Rosenbluth [SI. There the chain 
has some knowledge of the monomer’s local environment. The next step then only 
takes the choice out of jumps to an empty site. Within this method the same phase 
space as for standard S A W  is sampled, but one gets a modified distribution. One has 
to make corrections for this. It will be one of the main results of this paper that we 
give an estimate of the quality of such methods. Several modifications of this, also 
called ‘biased sampling’, with a soft bias [6] or looking ahead more than one step [7] 
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were proposed and used. A significantly different approach was made by the binary 
assembly method of Alexandrowicz [8]t. He built chains by a random binary assembly 
of two existing chains. 

The second class of methods are the so-called dynamic simulation methods ([9-121 
and references therein). Here beads are selected at random and then a motion due to 
a random choice is attempted. These methods allow only for one chain length and, 
for example, one temperature in one run. 

The above short description shows that the methods of generating chains directly 
by the use of a random algorithm are still a very important and valuable tool for many 
applications. It allows us to analyse all chain lengths up  to the longest generated N 
for different quantities. By introducing a temperature in the analysis (see below), these 
became the classical methods to investigate the collapse transition [13-151. Here we 
now want to investigate in detail the properties of the biased sampling method of 
Rosenbluth and Rosenbluth [5] and its various extensions. This is of special importance 
because these methods are used for investigations of the collapse transition [14] as 
well as for standard SAW, which correspond to chains in a very good solvent [16-191. 
However, no  detailed statistical analysis of this approach has been published up  to 
now, in spite of the fact that recent simulations use much longer chains than the initial 
tests [5]. 

The organisation of the paper is as follows. Section 2 contains a detailed description 
of the biased sampling method as well as a first analysis of the data for linear polymers 
on the FCC lattice. In § 3 we give a detailed analysis of the statistical properties and  
construct a criterion for the accuracy of a sample of generated chains. Section 4 then 
discusses some generalisations of the method, while § 5 contains our conclusions. 

2. The Rosenbluth-Rosenbluth method (RR) for long chains 

In the following we consider the generation of single SAW confined to a lattice. For 
a description of the procedure in the continuum, see [20]. The chains start at a given 
site. Let the coordination number of the lattice be qo and let us generate chains up  to 
a length N .  For standard simple sampling at each step the new bond is chosen out 
of qo - 1 directions at random. We take only q,, - 1 lattice bonds into account in order 
to avoid chain termination by direct backfolding. I f  the selected new bond hits a lattice 
site that is already occupied, one has to stop the chain and start a completely new 
one. Of course, one can use the part of the walk generated up  to that point for the 
statistics of shorter chains. However, the success rate of chains decays exponentially. 
The number of all SAW of length N is given by [4] Z( N )  = c,qzNY-’  with y = ( d  = 3)  
and y =% ( d  = 2) [21] and  effective coordination number qefi< qo- 1. On the FCC 
lattice, which we are going to use subsequently for the actual simulations, we have 
q0-  1 = 11, while qea = 10.035. Thus, for N = 100, only 0.022% of the attempts are 
successful. A way out of this was suggested by Rosenbluth and Rosenbluth [SI as 
follows. Before we try to add a new bond, one looks for the empty neighbour sites. 
If there is no empty site available, the chain is stopped. I f  there are k sites available, 
one out of these is chosen at random with probability p = l / k  (see figure 1). Here 
chains can only be terminated if the walk runs into a cage. For d = 2 we find, for 
example, on the square lattice that about 70% of the walks still exceed 200 bonds 

$Th i s  is probably the best static method. I t  allows a very precise determination of the critical exponent y. 
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Figure 1. Biased sampling. The probabilities of the steps are indicated. The situation 
displayed shows that the inversely growing walk has a different probability, as indicated 
by the numbers in brackets. Note that, for walks on the honeycomb lattice in ZD only, 
this irreversibility vanishes because 40- 1 = 2. 

[22]1. For d = 3  this termination turns out to be extremely rare. The larger the 
coordination number qo, the higher is the probability of survival. For walks on the 
diamond lattice (q,, = 4) at N = 700 still more than 90% of the attempts are successful 
[22]. For the FCC lattice the acceptance rate, due to our calculations, is 99.3% for the 
same length N = 700. 

However, although the paths one samples are exactly the SAW trajectories, the 
distribution functions are very different. For SAW each configuration has exactly the 
same probability P N ,  namely 

PN = q;l(qO-l)-"-". (2.1) 
This is different for the biased walk. Here the probability P N ( { r } )  of a given N-step 
walk with configuration { r }  is 

As one can see from figure 1, 'dense' configurations have a higher probability. The 
R R  sampling introduces a bias towards such configurations. An additional complication 
might oc tur  because the sampling procedure is not reversible. The two directions in 
which a special walk could be generated may lead to different probabilities (but only 
if qo- 1 > 2). To correct for the introduced bias, each chain does not count as 1 during 
the sampling, but has a weight 

N 

W N ( { r } )  = k / ( q O -  l )  (2.3) 
, = I  

because each given configuration { r }  is sampled W N ( {  r } ) - '  too often. One can interpret 
this weighting in the following way: the probability Pkw of a simple sampling walk 
to choose one of the available sites at step i is 

P k w =  l / ( q o - l ) .  (2.3~1) 
The corresponding probability of a R R  walk P k R  is 

PkR= I / k , .  (2.3b) 
Therefore, the weighting factor w' = k, / ( q O -  1) has to be introduced satisfying the 
relation 

PkRw' = P k w .  (2.3 c )  

t For walks in the SAW universality class one has y = ( d  = 3 ) .  However, for the R R  chalns the crossover 
to asymptotic behaviour occurs SO late that, up to N - 1000, the apparent exponent y is not distinguishable 
from 1. 
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The product Ilz, w i  which is the weight of the whole chain is then given by (2.3). 
Because of this weighting, the mean values for the two procedures have the following 
form. 

The partition function is, for simple sampling, 
N 

Z N  = number of chains NY-1 

number of attempts qo - 1 

and, for RR sampling, 

( 2 . 4 ~  

(2.4b 

Similarly, we find for any other quantity X({r}) of a chain of length N for simple 
s amp 1 i ng 

x a l l  chains X({r}) 
(X)=number  of chains of length N 

( 2 . 5 ~ )  

and for RR sampling 

( X ) =  ( c X({r) )  WdCl,,)( c W W )  -I (2.56) 

where the sum runs over all generated chains. Equations (2.3)-(2.5) define the scheme 
for calculating all quantities of interest. Here we will first focus on the use of this 
approach for standard SAW. (If one wants to introduce a temperature, e.g. via nearest- 
neighbour energies, equations (2.4) and (2.5) hold with the obvious modifications of 
adding the appropriate Boltzmann factors). 

The quantities we are looking for are the partition function Z N ,  which is the average 
weight (W,) defined as 

( W,) = W, ({  r}) (number of successfully generated chains)-’ (2.6) 

as well as the whole distribution W,({r}) of the various samples. For the typical 
physical quantity X of equation (2.5) we usually take the mean squared radius of 
gyration (R&(  N ) ) :  

all chains all chains 

( ( r l  ) 

(2.7) 

where r, denotes the position of the ith monomer and r,, is the centre of gravity of 
the whole walk. We focus our analysis on RG instead of the mean squared end-to-end 
distance ( R 2 ( N ) )  = ( (ro-  r,)’). RG has less fluctuations [22] than R. For polymers RG 
has a more general physical meaning, if one considers branched structures, for example. 
Using equations (2.3)-(2.7) we can analyse chains of arbitrary length N. Because our 
aim is not only to simulate long linear objects, but also star polymers, etc, we generate 
walks on a high coordination number lattice (FCC with qo= 12). To test the validity 
of the RR approach and to construct a criterion for its quality, standard SAW are 
generated with 0 < N 480. For comparison, for N = 480 about 99.8% of the attempts 
to generate a R R  chain are successful. The samples contained up to 130000 chains. 
Note that for walks, which can be understood as a critical phenomenon, the relative 
variance of the radius of gyration ( A R ; )  = [((R:)*)-(R;)’]’’’/(Ra) approaches a 
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1 0 2 -  

constant (= 0.405). The distribution functions d o  nor become sharper with increasing 
chain length. One needs the same number of simple sampling chains for all N to 
achieve the same relative accuracy of the results. 

The first approach to check the statistical quality of a set of data is to subdivide a 
given sample into smaller ones. The fluctuations in the mean values of the subsamples 
give an estimate of the uncertainties of the whole sample. By doing this we found, 
for N >  120, strong fluctuations in ( R E )  for the R R  method. Even for more than lo5 
generated chains for, e.g., N=200 not only do the mean values of the subsamples 
fluctuate, but for the whole sample also the three Cartesian components of ( R i )  showed 
strong fluctuations (about *30%). However, this was only the case after correcting 
for the bias. Figure 2 gives an example of a run of 215 attempted chains for (R’) 
and (R;). 

For the R R  walk without correcting for the bias, taken as a different physical system 
(using equation (2.5a)), the error for ( R i )  was only * l % .  We checked different 
random-number generators to make sure that dangerous correlations are not hidden 
in our Markov process. This result, on a first glance, was somewhat surprising to us. 
Various authors generated chains of similar length N by the R R  method and used the 
results for SAW properties [16-191. Since the fluctuations disappear if one does not 
correct for the bias, it must be the weighting (2.56) itself which causes problems. 
Subsequently we shall try to quantify this rather qualitative statement. As has been 
pointed out earlier [14], the R R  method gives a systematic error which vanishes with 
increasing sample size. Our intention, however, is to quantify the statistical error of 
this procedure for sample sizes where no systematic errors remain. 

Let us first look at the distribution of the weights W N ( { r } ) .  The situation becomes 
worse the more the most relevant weights are pushed to the tails of the distributions. 
Figure 3 illustrates the influence of the tails of the distribution of weights for different 
chain lengths 30 zs N 480. The sample used here contains 215 (= 32 768) chains. The 

.- 

0 

lo I 10 20 50 100 200 500 

N 

Figure 2. End-to-end distance (R’)(C) a n d  radius of gyration ( R & )  (0 )  plotted against N 
for a sample of 2” chains.  Since only 7 2  chains ran into cages for N = 240 (acceptance 
rate of 99.8% ), we quote  the number of attempts as  the number of chains when describing 
the plots. For the actual calculations, of course, the real number of generated chains for 
each length N was used. 
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l o g 2 '  

Figure 3. W , ( N ,  I )  against log, I for different lengths N (0, 30; A, 60;  P, 120; 0,  150; 
A,  180; ., 240; 0, 480). 

reduced weight WR( N, I )  is defined as 

with W N ( { r } ,  1) equal to the weight of the chain with the highest weight, while 
W N ( { r } ,  2 )  denotes the second highest and  so forth. WR( N, I )  measures the relative 
contribution of the 1 chains with the highest weight to the overall sample. The figure 
clearly shows that the whole distribution for N = 480, 240 is dominated by the few 
configurations with the biggest weight. Only for chain lengths N S 120 are we allowed 
to expect reasonable results for this sample size. One can, of course, argue that the 
sample size is quite small and one should not expect to get good results. However, 
the above discussion of the variance of, e.g., ( R ; )  shows that the relative error should 
not depend on the lengths of the walks at a given sample size, which is the case here. 
With figure 3 the reason for this loss of reliability now becomes more clear: the relative 
size of the dominant part of the sample decreases markedly with increasing chain 
length. The most relevant chains are in the tails of the sample distribution. To get 
this tail, the sample has to be extremely large. For figure 3 this requires a zero slope 
for small 1. How such a distribution develops to the desired behaviour can be seen 
from figure 4. As expected, a given value of WR(N,  I )  corresponds to varying I 
proportionally to the sample size. Therefore, the problems of RR sampling arise from 
the difficulties in sampling tails of distribution functions. This will now be nicely 
illustrated by a similar analysis of the radius of gyration ( R ; ) .  For the uncorrected 
part we calculated ( R ; )  analogously to equation (2.5a), which is simply counting the 
number of walks for a given interval of R E .  The corrected distribution counts the 
weights of all walks having R i  in a given interval. Figure 5 clearly indicates that the 
overlap between these two distributions decreases and that the error bars of the mean 
values of the corrected sample increase greatly with increasing system size. In order 
to understand the reason for this effect and  to develop a strategy to overcome this 
problem, we have to look more into the theoretical background of the RR method. 
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Figure 4. W,( N ,  I )  against logz I for different sample sizes and fixed chain length N = 120. 
The number of chains considered starts from 2’ = 256 up to 215 in powers of 2, where the 
lower left curve gives the data for the smallest sample. 

3. Theoretical analysis 

In the previous section, we saw that the biased sampling introduces an  effective 
attraction among the monomers. This means that we have more nearest-neighbour 
contacts in the RR walk than in the SAW. However, these contacts can be interpreted 
as the potential energy of the chains. Since the energy itself is an  extensive quantity, 
this gives (for N >> 1) 

(ERR) = a R R  

and 

(ESAW) = 

Here aRR, aSAW are constants with a R R >  asAW. a R R N  denotes the energy of a RR walk 
without correcting for the bias (using equation ( 2 . 5 ~ ) ) .  Since aR,> aSAW,  the distance 
in the peaks of the energy distributions diverges linearly with N. Simultaneously, the 
typical width grows only with V”. This is because the heat capacity itself is extensive 
and  just the square fluctuations of E :  

cT2 = ((E’) - (E)*)  a N. (3.16) 

Thus the relative fluctuations in E vanish with N-”*. Figure 6( a, 6)  displays equation 
(3.1). It shows that the chains considered are long enough for this argument. Since 
the distance in the distribution peaks run apart with N, while the width of these 
distributions goes like N+’“ ,  the overlap vanishes with increasing N. This must cause 
serious problems for biased sampling. To analyse this we first look at the partition 
function. 

3.1. Partition function 

In the previous section we found that a walk with configuration {ri}, generated by the 
R R  algorithm, has a probability which is too high by a factor { W N ( { r , } ) } - ’  compared 
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Figure S. Probability distribution P( R E )  against RZj for the corrected and  uncorrected 
distributions. ( a )  gives the results for N = 120 while ( 6 )  corresponds to N =240. Both 
distributions are  taken from a sample of 2" = 1.3 x 10' chains. The circles give the corrected 
and  the squares the uncorrected data .  

to the corresponding non-reversal random walk ( N R R W ) .  The N R R W  is a random walk 
without direct backfolding and a coordination number q ,  = qo - 1. However, this 
compares probabilities of two kinds of systems which have a different set of configur- 
ations. What is needed is a comparison of the probabilities of the SAW of the same 
length. To be specific, we are looking for the probability of a given SAW of length N 
relative to all configurations of SAW of length N .  Here we must not look for the 
stochastic probability of generating a given configuration by a given algorithm, because 
this includes all the unsuccessful attempts to build a chain. Taking this into account, 
a chain generated by biased sampling is too probable by a factor 

(3.2) 

where q:AWy-I is the number of all the possible SAW configurations. 
Following equation (3.2) we can state that a given R R  chain counts for W c ( { r , } )  

chains which is a number much smaller than 1. To quantify this we rewrite equation 

1/ W t ( { r , } )  = [ w , ( { r , } ) ( q ~ -  ~ ) ' / ( ~ > I N ~ - ' ) I - '  
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Figure 6. ( a )  Plot of ( € ( N ) )  against N for NG240.  ( b )  Plot of ( € ( N ) ' ) - ( E ( N ) ) ?  for 
N < 240. 0, biased sampling; 0, extended biased sampling; +, simple sampling; x, T = 7.8 
(SAW in the neighbourhood of T =  8). 

(3 .2)  as a ratio of probabilities, 

W % { r J )  = PN/PRNR(Ir,)) (3 .3)  
where PN = (qcflNY-')- '  and P y ( { r , } )  is the probability due  to equation (2.2). With 
( P y ( { r , } ) )  being the average probability of an  N-step R R  chain, equation (3 .3)  becomes 

w*, = PN/( P","). (3 .4)  
The behaviour of (P",") is known quite accurately for certain cases. Although the 
uncorrected walk belongs to the s4w universality class, N S  1000 [22] to very good 
accuracy, we can write 

(p?JR) = qi[RR (3 .5)  
with qe8,RR< qen. qeH,RR plays the same role as qef1 in (2 .4a) .  Thus we write for W*, 
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with q e f i . R R  = 9.76 and qeH = 10.035 for the FCC lattice ( N  + CO).  This results in W*, = 
N-1'6(1.03)-N. This suggests that we need (W*,)-' times as many chains for the RR 

method than for simple sampling. However, as figures 3-5 suggest, this estimate is 
too optimistic.? 

Equation (3.5) gives a formal description for the problem occurring but no real 
physical picture. What does this change in qefi mean? As mentioned earlier, the biased 
sampling of R R  introduces an  effective attraction between the monomers of the chain. 
We use this to rewrite the weight of a chain as 

(3.7) 

where m, is the number of neighbour sites occupied by other monomers of the chain. 
This leaves k, = q1 - m, directions for the ith bond with q i  = qo - 1. Note that the 
previous monomer is not counted as a contact in order to be consistent with the usual 
notation. These contacts are the energy of such a chain if nearest-neighbour interactions 
are considered (the energy of the last site as starting point for the ( i  + 1)th bond is not 
counted here). Since E is an extensive quantity, the average number of contacts E in 
such a chain is proportional to the number of monomers. Therefore we can write 

(3.8) 

The energy is governed by the typical density around a given monomer measured with 
respect to a volume of the order I' where 1 is the bond length. This density along the 
chain is, to leading order, independent of the length N of the chain. We now make 
the assumption that to good accuracy the energy E {  T i }  of a given configuration is given 
by contacts homogeneously distributed along the chain. With E ( { r i } )  =I;,=, mi we 
then write for equation (3.7) 

N-I  

For the FCC lattice this ratio (m)/ql is typically of the order $. Note that this is a 
kind of mean-field argument on the single-chain level. On the level of different chains 
we do  take into account fluctuations. They will lead us to our quality criterion. Taking 
the logarithm of g and expanding to first order yields 

In g ( { r , } )  = - (m)N/q ,  

A i r , ) )  = exp(-(m)N/ql) .  

and (3.10) 

This is a quite important result, because this means that the distribution function for 
the statistical weights WN plotted on a logarithmic scale is essentially the same as the 
distribution of the uncorrected energy E. Figure 7 gives a check of this statement and 
shows that this is a good approximation. The deviation is a consequence of the 
mean-field-like argument above. By assuming a completely homogeneous contact 
distribution along the chain, the calculated mean weight is slightly higher than the 

For d = 2, equation (3.5) has to be modified to ( P t R )  = 4;; N-'"" where y, due to the slow crossover 
into the asymptotic regime, is an N-dependent quantity varying typically between 1.15 and ( N  -. cc). For 
a first criterion, however, it is probably sufficient to omit this N dependence and take a value around 1.2. 
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Figure 7. Distribution function of the statistical weights P( W )  against In W for N = 120, 
240 and of the energy due to (3.10). The normalisation is such that the area under the 
curves i s  set to one. N = 120: 0, weights; 0,  contacts; N = 240: X,  weights; +, contacts. 

actual one. However, we are able to derive a functional form of the weight distribution. 
The approximation becomes better the higher the coordination number is. The mapping 
of weights to the contact energy of a specific generated walk leads us to a direct 
physical interpretation and quality criterion. Since the weight distribution function is 
given by the energy contact distribution we can estimate the soundness of the R R  

sampling. 
To quantify this we assume that the energy distribution is a Gaussian and similarly 

the distribution of the logarithms of the weights. Note that the weight distribution 
functions are always normalised to one with respect to the real (non-logarithmic weight) 
scale. With 

x = In wN({ri}) 

2 = o n  w N ( { r , } ) )  

s = ((x’) - ( x ) * ) ” ~ (  = In b)  ( 3 . 1 1 ~ )  

we get for the normalised distribution function of the logarithms of the weights 

h(  W) = H0[(27r)”’ In b]-’ exp[(-1/2 In’ b)(ln W-(ln W))’] (3.11b) 

which translates to 

h ( x )  = H ~ ( J G S ) - I  e x p [ ( - 1 / 2 s ’ ) ( x - ~ ) ~ ] .  ( 3 . 1 1 ~ )  

Ho is determined by the condition h(  W) d W = 1. This gives 

H” = exp( -2 - js2). (3.12) 

Using this we now give a direct way of calculating the relative accuracy of a biased 
sampling sample. 
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First let us concentrate on the partition function. Using equation ( 2 . 4 ~ )  for the 
unbiased sample, the probability that a started walk succeeds up  to N steps is 

(3.13) 

Thus after n, attempts we have on average 
( n )  = naPN (3.14) 

chains. The deviation from this mean value is then given via ( n ' )  = ( n ) 2 +  n,P,(l - P h i )  
for uncorrelated events with probability P N .  The relative error in calculating the 
partition function therefore gives, by means of simple sampling, 

(3.15) 

For PN + 0 this is A n / ( n )  = (n)-''?. 
To calculate the error for biased sampling we proceed in the same way but using 

the weight distribution of equation (3.11b). From the proposed functional form of the 
weight distribution, we are able to give an  analytic expression for the error. For biased 
sampling we now follow equation (2.46). To calculate the partition function, we need 
the average weight (W, )  of an  N-step walk. With ( 2 . 4 6 )  this gives 

Note that n,  and n are not necessarily the same. For d = 3  we can as an excellent 
approximation set na (number of attempts) = n (number of successful chains). 
However, for d = 2 we have to distinguish between the two. With (3.16) we now only 
have to calculate ( W N ) 2  and ( W h )  in order to get the fluctuations. Using ( 3 . 1 1 ~ )  and  
(3.12) we have to calculate ( VV({r,}))? and ( W ; , ( { r , } ) )  which yields for n ,  = n ( d  = 3) 

(3.17) 

where X and s2  are defined in (3.11) for the distribution of the logarithms but with 
the normalisation d W h (  W )  = 1. 

Therefore the relative real width of the weight distribution is given by 

(3.18) 

This results in an error A W for the partition function analogous to (3.15), 

A w/(  W )  = ( 1 / J n )  exp(fs?).  (3.19) 
On the other hand, s7 is directly related to the specific heat of the biased chains. For 
the actual simulation this gives a very simple way of estimating the accuracy. In the 
framework of our mean-field-like argument (equations (3.9) and (3.10)) we identified, 
to first order, In W y ( { r , } )  with the number of contacts along the chain. With this we 
identify, via equation (3.1 l a ) ,  

( 3 . 2 0 ~ )  ( In2 W )  - (In W)' = ( 1 / q ,  )'( (( m N)') - ( m N)') 

and 

(In W )  = - ( l / q , ) ( m N ) .  (3.20b) 
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Using the data of figure 7 the agreement is reasonably good. For the FCC lattice we 
thus find for large N ( N  > 200, figure 6( 6 ) )  

(~ ' )=(9.5N-630)/47 N + W .  (3.21) 

For figure 8 we calculated A W /  W due to equations ( 3 . 2 0 ~ )  and (3.21) for each chain 
length indicated, as well as the error in Z N ,  directly as mentioned in the figure caption. 
For N > 40 our theory and the sample data coincide. As one expects for short chains, 
our assumption of the functional form of the weight distribution is no longer valid. 
This is clearly shown by figure 8. The error of the RR sample increases exponentially 
with N while that of the ss sample remains constant. However, one should be aware 
of the fact that the corresponding error increase of the ss method is significantly larger 
if one counts the ss attempts rather than the successfully completed chains. Qualita- 
tively, this occurs because each generated R R  chain gives information proportional to 
its weight for the chain set investigated, while information is lost if a chain must be 
stopped in the ss procedure. 

If one now accepts as a criterion that a biased sample of nRR chains should have 
the same relative error as a sample of n,, unbiased chains, (3.19) and (3.15) yield 

n R R / n S S  = exp(s'). (3.22) 

For the FCC lattice we find from figure 8, for N = 100, nRR/ n,, = 28. For N = 240 we 
use (3.22) and find n R R / n S S  = 8.3 x lo5, in good agreement with the interpretation of 
figure 3. There we found a sample of 3 x lo5 chains not sufficient for this chain length. 

Note that the present criterion is much deeper in a physical sense than the first 
approach of equation (3.6). Here we make use of the contact distribution of the biased 
sample and relate the quality of our sample to the mean value and the width of this 
contact distribution. 
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It should be noted that in the present form the argument only holds for n, = n, 
which means that all the attempts to produce a biased chain are successful. If this is 
not the case, namely n , >  n, we have to start again at (3 .17)  and modify our arguments 
slightly. We rewrite (3 .16)  as 

(3 .23)  

We then can use the same arguments as before but have to incorporate the ‘probability 
of existence’ n , / n  in our  argument, similar to the case of the unbiased sample. Doing 
this, equation (3.19) becomes 

(3 .24)  

For sampling with a soft bias [ 6 , 2 3 , 2 4 ]  this smoothly crosses over to unbiased sampling 
for s’+O. As equation (3 .24)  illustrates, the dominant contribution comes from the 
exponential part. 

3.2. Measurable quantities 

In the previous section we looked at the partition function generated by a biased 
sampling procedure. This is a very special case, because one is looking for a quantity 
relative to the exactly known N R R W  results. As measurable quantities we here define 
the number of contacts E or the radius of gyration R& and so on. These quantities 
cannot be directly related to the exact N R R W  data simply by looking at probabilities. 
Here we are looking at the physical system itself, which means that we must relate 
our results to the set of SAW rather than of NRRW. As we will see below, this has 
consequences for the way we have to argue in order to find the error bars. For the 
partition function the natural way to correct for the bias is given by the coordination 
number q 1  of the corresponding NRRW. This is not necessarily the case here. Using 
( 2 . 5 6 )  the normalisation of the weights is arbitrary. Any normalisation of our correction 
factor cancels in ( 2 . 5 6 ) .  However, here ( 2 . 3 ~ )  should be replaced by 

P’,,W‘ = l / f s s s ( N )  (3 .25)  

with r s s ( N )  being the mean number of vacant sites if one is building up  a SAW by 
simple sampling. As l / f s s ( N )  is the probability of an ss walk to proceed to a vacant 
site while growing, we thus have taken into account that the new reference sample is 
the set of SAW. f s s (  N )  can simply be related to the contact number mSS( N )  of the ss 
walk by 

l s ss (N)  = 41 - mss(N)  ( 3 . 2 6 )  

where m s s ( N )  asymptotically is a constant. 
At first glance one would expect f s s ( N )  = qefl(N).  Figure 9, where q e f i ( N )  and 

? s s ( N )  are plotted against 1/ N, shows that these two quantities differ significantly. 
For the FCC lattice qefl(N) extrapolates to qeR= 10.035 in very good agreement with 
earlier investigations, while rss( N )  extrapolates to f s s  = 10.29. What was surprising 
to us is this strong difference between qefl and fss. For d = 2, as figure 10 illustrates, 
one can expect such a difference. For d = 3 such cages, however, are very rare. As 
we will see below, the quantities we quote give reliable estimates for the error bars. 
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l i N  

Figure 9. qeR(N) (+) and f s s ( N )  ( x )  against N - ’  (2”  chains created by EBS; see $ 4 ) .  
Note that the two quantities differ significantly. 

--- 
Figure IO. ZD illustration of one possible source for the difference between qeR and Tss. 
For fss the open site leading into the dead end counts for the infinitely long chain while 
for qeR this does not count. 

After this discussion we can proceed to calculate the error bars of the biased sample. 
We want to calculate a physical quantity X ( N ) .  The distribution function of X ( N )  
should have a relative width SX = ( ( X 2 - ( X ) 2 ) ” 2 / ( X ) .  Both the mean value ( X )  and 
the width SX might depend on N. For R & ,  SX approaches a constant for large N 
while for the contacts SX should be proportional to Note that here distribution 
always means the corrected distribution or the (same) directly sampled ss distribution. 
The relative error A X ( N )  of a sample of n,, chains is then given for ss by 

AXss  = n;;”SX. (3 .27a)  

With suitable normalisation of the weights for biased sampling we get as lower limit 
for the relative error 

with 

(3 .27b)  

(3.28) 

wheref; is the number of free sites to proceed to for link j .  Figure 11 gives the calculated 
and the ‘measured’ error bars for a biased sample of 2048 chains for R ; .  
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Figure 11. Error bars of the radius of gyration. Symbols as in figure 8. The procedure for 
determining the experimental errors is completely analogous to that of figure 8. 

If we now have n,, simple sampling chains we need, with (3.28), on average 

n B S  = n S S (  w’N)-‘ (3.29) 

biased chains to arrive at the same relative error. For the FCC lattice we find 

In ( n B s / n s s )  = N --In 7 = 3.78 x 10-*N - 1.5 
[(:) :J (3.30) 

giving a ratio of 21 for N = 120 and 1.9 x lo-’ for N = 240. Note that (3.30) holds for 
any quantity besides the partition function. 

At this point we should remember that our arguments are in principle mean-field- 
like, especially if we consider the strong fluctuations in the corrected R, distribution 
of figure 5 .  However, as the analysis shows, these fluctuations are of minor importance 
for our case. 

It is important to note that the relative accuracy of the partition function is much 
worse compared to the ‘measurable quantities’. The reason is the need of taking the 
N R R W  set as a reference system for the partition function. 

4. Extensions and modifications 

4.1. Extended biased sampling ( E B S )  

There are different ways to improve the RR method by looking more than one step 
ahead. Meirovitch [7] proposed his ‘scanning future step’ algorithm. He wants to 
continue a given walk by n additional steps and then looks for all ways to perform n 
steps. He then takes one of these possible choices. For n = 1 this reduces to the biased 
sampling described above. In practice, n usually is restricted to n s 3, because otherwise 
the enumeration of the ‘future steps’ is too time consuming. 

Here we want to propose a more direct approach to the ‘scanning future steps’ 
algorithm. We still want to perform a one-step growth of the walk. Nevertheless, the 
new step has some knowledge about the future further out. In this paper we constrain 
ourselves to the two-step extension. Further generalisations are straightforward. 
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10.2 

c .- c 

Consider a walk of N steps. In order to add the ( N +  1)th step we first look for 
empty sites to proceed to. Then we count for each open site the number of open sites 
for the ( N  + 2)th step. We then proceed to one of the open sites with a probability 
proportional to the number of empty sites for step N + 2. 

Figure 12 gives an example for a walk on the square lattice. Let qn be the weight 
normalisation constant, which is q ,  for the partition function and f s s  for 'measurable 
quantities' as defined in 8 3. The probability pi  of step i is then 

0 .  .- + 
+ X - /'"' + +  x 

+ x  

m, is the number of jump sites for the following step while k, is the number of empty 
neighbours for step i + 1 if the system proceeds in direction j .  The weight of a generated 
walk is then defined by 

(4.2) 

Here a mapping of weights onto contacts, analogous to equation (3.9), is not possible. 
However, it is evident that EBS gives more accurate results as a huge number of 
low-weighted configurations with many contacts is avoided (figures 6, 8 and 13). The 
weighting of both R R  and  EBS leads of course to the same partition function Z N .  This 

h 

0 0  0 

0 

0 

0 

Figure 12. Extended biased sampling. The site having two free neighbours is preferred. 
This leads to less collapsed configurations. 

I 0 
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means that for measurable quantities the lower error limit is the same. EBS of comes 
closer to this limit. 

Note that for d = 3 and  the partition function again it is sufficient to consider all 
attempts of building a chain as successful for all practical N. For d = 2 again the effect 
of cages has to be incorporated, as mentioned in § 3. However, as should be mentioned, 
EBS does not sample exactly the same configurations as BS. For the last step a path 
leading into termination of the walk at the next step is not sampled. This is not severe 
for d = 3, but for d = 2 one should be aware of some deviations from the standard 
sample for short chains. In this case, one should modify EBS slightly taking 
p i = ( k , + l ) / X y ~ ( k , + l )  instead of (4 .1) .  

4.2. Soft biased sampling ( S B S )  

SBS is a one-step procedure as is the standard BS. However, to overcome the huge 
deviations from BS distributions and ss distributions in some cases it is useful to allow 
for more or less probable directions. This is done even if the less probable one leads 
to termination of the chain. This method has proven to be quite useful for some surface 
and interface problems. To determine the accuracy of the ‘measurable quantities’ we 
follow exactly the same procedure described above. Because of the huge number of 
terminated chains for analysis of the partition function we need to consider the modified 
treatment of (3.23) and (3.24). 

4.3. Biased sampling with temperature 

BS turns out to be especially useful for investigations of the collapse transition of 
polymer chains. A first attempt in this direction has already been made by Mazur and  
McCrackin [ 1 4 ] .  As discussed at the beginning of this paper one can introduce a 
temperature by giving a walk with m nearest-neighbour contacts a Boltzmann weight 
exp( m /  T )  in the case of attraction between the bonds. The Boltzmann constant is set 
to unity. Because BS prefers configurations with many contacts the bias can be 
interpreted as an effective attraction between monomers. As one can directly see from 
the arguments above, the effective temperature TBs of uncorrected biased sample 
simulation is given by 

(4 .3)  

where we use notation analogous to (3 .29) .  For the FCC lattice TBs = 8.5 which is 
slightly above the theta temperature. It is well known that biased sampling chains are 
very much near the theta temperature [25,26], but as given above and  seen earlier 
numerically [ 2 2 ]  and analytically [27] such chains still belong to the SAW universality 
class. 

Now ss chains give a much worse result compared to BS. 

5. Conclusion 

In  the present paper we have developed a criterion to calculate the accuracy of biased 
sampling compared to direct simple sampling simulations. In most cases BS is much 
worse compared to ss. However, because of the almost 100°/~ success rate of biased 
sampling there exists a wide region of chain lengths where BS is of technical advantage 
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even for standard SAW.  For increasing chain length N BS becomes exponentially bad. 
Typical ways out, such as Meirovitch's 'scanning future step' algorithm or extended 
biased sampling ( E B S )  proposed here do  not overcome this problem. These methods 
shift the limit of applicability to larger N. For the FCC lattice and the EBS with two 
steps looking ahead the limiting chain length is increased by a factor of two. For most 
practical purposes this is sufficient. This allows us to sample relatively long chains 
( N  G 240) with very high accuracy. For much longer chains one has to use dynamic 
methods which d o  not allow us to calculate y and qea [3] or  one has to use the constant 
fugacity approach [ 111. Note that both methods d o  not allow the simultaneous analysis 
of different chain lengths and/or  temperatures. They are therefore naturally very time 
consuming and will only be of advantage for very long chains. We think the above 
discussion shows that there was an urgent need for a more detailed theoretical analysis 
of biased sampling procedures. The philosophy of our treatment can of course be 
translated to the umbrella sampling techniques [28] as well. As far as we know no 
such treatment for the umbrella sampling techniques has been performed up to now. 
In addition, as we saw above, for investigating the 8 properties ( d  = 3)  B S  seems to 
be the ideal approach. However, for d = 2  the situation is much worse. Standard BS 

is not able to sample the 8 properties or SAW properties [29]. For this case non-standard 
methods, such as BS with temperature, etc, have to be employed. 

To conclude this paper, we repeat the recipes developed in the previous section. 
In order to estimate whether a BS approach can be used for the investigation of SAW 

properties, we simply have to calculate the average weight due to (3.28) and (3.29). 
This directly gives the number of chains n,, we need to arrive at the accuracy of a 
sample of n,, simple sampling chains. By modifying f , ,  one can adjust this criterion 
to various temperatures. This holds for the measurable quantities as defined in 0 3.2. 
For the partition function the only difference is that we have to normalise the weights 
by q ,  instead of f s s .  Then the logarithmic relative width of the weight distribution 
directly gives an accuracy criterion, due to (3.20). Thus we have derived a direct way 
of calculating the accuracy of biased sampling procedures. The formulae allow us to 
extrapolate to arbitrary chain lengths. The above arguments give tools to estimate 
from very cheap simulations whether an  extensive project using long chains generated 
by a kind of BS algorithm can lead to reasonable results or not. 
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